- integrable function space
- пространство интегрируемых функций
The New English-Russian Dictionary of Radio-electronics. F.V Lisovsky . 2005.
The New English-Russian Dictionary of Radio-electronics. F.V Lisovsky . 2005.
Integrable function — In mathematics, an integrable function is a function whose integral exists. Unless specifically stated, the integral in question is usually the Lebesgue integral. Otherwise, one can say that the function is Riemann integrable (i.e., its Riemann… … Wikipedia
Locally integrable function — In mathematics, a locally integrable function is a function which is integrable on any compact set of its domain of definition. Formal definition Formally, let Omega be an open set in the Euclidean space scriptstylemathbb{R}^n and scriptstyle… … Wikipedia
Function (mathematics) — f(x) redirects here. For the band, see f(x) (band). Graph of example function, In mathematics, a function associates one quantity, the a … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Dirac delta function — Schematic representation of the Dirac delta function by a line surmounted by an arrow. The height of the arrow is usually used to specify the value of any multiplicative constant, which will give the area under the function. The other convention… … Wikipedia
Lp space — In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p norm for finite dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford Schwartz 1958, III.3),… … Wikipedia
Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… … Wikipedia
Hardy space — In complex analysis, the Hardy spaces (or Hardy classes) Hp are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz (Riesz 1923), who named them after G. H. Hardy, because of the… … Wikipedia
Generalized function — In mathematics, generalized functions are objects generalizing the notion of functions. There is more than one recognised theory. Generalized functions are especially useful in making discontinuous functions more like smooth functions, and (going … Wikipedia
Characteristic function (probability theory) — The characteristic function of a uniform U(–1,1) random variable. This function is real valued because it corresponds to a random variable that is symmetric around the origin; however in general case characteristic functions may be complex valued … Wikipedia
Maximal function — Maximal functions appear in many forms in harmonic analysis (an area of mathematics). One of the most important of these is the Hardy–Littlewood maximal function. They play an important role in understanding, for example, the differentiability… … Wikipedia